If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+19x=60
We move all terms to the left:
x^2+19x-(60)=0
a = 1; b = 19; c = -60;
Δ = b2-4ac
Δ = 192-4·1·(-60)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{601}}{2*1}=\frac{-19-\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{601}}{2*1}=\frac{-19+\sqrt{601}}{2} $
| 7.25n=101.5 | | 3p+9=(-3) | | 8=2x=+4 | | 21=8-3x | | 7x12+30÷3=58 | | -8(x-1)=-6-2 | | 20=10(x+8) | | d4+3=5 | | -6(m-1)+18=24 | | 3u^2–20u+12=0 | | 9x+16=7x+4 | | 5x-2(1x-2)=-3+5x-3 | | 2z2+11z+14=0 | | 5c-10=-5 | | 5(b+3)-5=35 | | X2+-18x+45=0 | | -1/5x-15=x+9 | | 1x/2x+3=x-9 | | F(-3)=-5x+2 | | x*3=24 | | -15x-15=x+9 | | 9/14x=112 | | 1/2x+3=x-9 | | x+8.2+2.1=183 | | 5a=8=(-2a)=-7 | | 25-5=2+3(3+x) | | x6=86 | | -7n=-n-142 | | -8+v/4=20 | | 3+4*5/2=k-2 | | n/9+25=64 | | 2v+96=108 |